OHYAUCHI Nao
- Affiliation
- Institute of Pure and Applied Sciences
- Official title
- Assistant Professor
- Research fields
Foundations of mathematics/Applied mathematics - Research keywords
数理統計学 - Research projects
Bayes的アプローチによる統計的非正則推定の新展開 2010 -- 2013 Japan Society of for the Promotion of Science/若手研究(B) 3,250,000Yen 統計的非正則推定論における情報不等式の効用 2005 -- 2007 Japan Society of for the Promotion of Science/若手研究(B) 4,040,000Yen - Career history
2004-04 -- 2004-05 国立大学法人筑波大学大学院数理物質科学研究科博士特別研究員 2004-06 -- 2005-03 国立大学法人筑波大学大学院理工学研究科ベンチャー・ビジネス・ラボラトリー研究員 2005-04 -- 2007-03 国立大学法人筑波大学大学院数理物質科学研究科助手 2007-04 -- (current) 国立大学法人筑波大学大学院数理物質科学研究科助教 - Degree
2004-03 Ph.D University of Tsukuba - Licenses and qualifications
1999-03-26 高等学校教諭一種免許状数学科 - Academic societies
2005 -- (current) 日本数学会 2006 -- 2016 THE JAPAN STATISTICAL SOCIETY - Articles
- Second-order asymptotic loss of the MLE of a truncation parameter for a truncated exponential family of distributions
Akahira M.; Ohyauchi N.
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS/46(12)/pp.6085-6097, 2017 - Second Order Asymptotic Loss of the MLE of a Truncation Parameter for a Two-Sided Truncated Exponential Family of Distributions
Akahira Masafumi; Ohyauchi Nao
JOURNAL OF THE JAPAN STATISTICAL SOCIETY/46(1)/pp.27-50, 2016 - Comparison of risks of estimators under the LINEX loss for a family of truncated distributions
Ohyauchi Nao
Statistics/47(3)/pp.590-604, 2013-06 - Asymptotic comparison of estimators for a family of truncated distributions (Asymptotic Expansions for Various Models and Their Related Topics)
大谷内 奈穂; 赤平 昌文
RIMS Kokyuroku/1860/pp.129-139, 2013-11 - Comparison of the Bayes risks of estimators for a family of truncated normal distributions
Ohyauchi N.
Commun. Statist.-Theory and Meth./31(5)/p.699-718, 2002-01 - Information inequalities for the Bayes risk for a family of non-regular distributions
Akahira; M.; Ohyauchi; N.; +大谷内 奈穂
Ann. Inst. Statist. Math./54(4)/p.806-815, 2002-01 - An information inequality for the Bayes risk for a family of uniform distributions
Ohyauchi; N.; Akahira; M.; +大谷内 奈穂
Istatistik/5/p.1-6, 2002-01 - The Vincze inequality for the Bayes risk
Ohyauchi N.
J. Japan Statist. Soc./34(1)/p.65-74, 2004-01 - On the Pitman estimator for afamily of non-regular distributions
Akahira; M.; Ohyauchi; N.; Takeuchi; K.; +大谷内 奈穂
Metron/65(1)/p.113-127, 2007-01 - The Amount of Partial Information and Sufficiency (Statistical Region Estimation and Its Application)
大谷内 奈穂; 赤平 昌文
RIMS Kokyuroku/1101(0)/pp.110-113, 1999-06 - On lower bounds for the Bayes risk of estimators in the uniform and truncated normal cases (Statistical Inference and the Bioequivalence Problem)
大谷内 奈穂; 赤平 昌文
RIMS Kokyuroku/1224(0)/pp.11-35, 2001-07 - Asymptotics of the Maximum Probability Estimators in Statistical Experiments (Statistical Experiments and Clinical Trials)
大谷内 奈穂; 赤平 昌文
RIMS Kokyuroku/1273(0)/pp.16-28, 2002-07 - Asymptotic efficiencies of estimators in a one-parameter family of truncated distributions (Approximations to the Statistical Distributions)
大谷内 奈穂; 赤平 昌文
RIMS Kokyuroku/1334(0)/pp.24-36, 2003-07 - An information inequality for the Bayes risk applicable to non-regular cases (Approximations to the Statistical Distributions)
赤平 昌文; 大谷内 奈穂
RIMS Kokyuroku/1334(0)/pp.183-191, 2003-07 - The asymptotic expansion of the maximum likelihood estimator for a truncated exponential family of distributions (A New Perspective to Statistical Models and Its Related Topics)
赤平 昌文; 大谷内 奈穂
RIMS Kokyuroku/1804(0)/pp.188-192, 2012-08 - Loss of information of a statistic for a family of non-regular distributions, II: more general case
Akahira Masafumi; Kim Hyo Gyeong; Ohyauchi Nao
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS/64(6)/pp.1121-1138, 2012-12 - 統計的非正則推定における Bayes 的アプローチによる情報不等式
大谷内 奈穂
數學/62(3)/pp.366-385, 2010-07 - The non-regular statistical structure from the viewpoint of the loss of information (Statistical Information in Inference and Its Related Topics)
Kim Hyo Gyeong; 大谷内 奈穂; 赤平 昌文
数理解析研究所講究録/1758(0)/pp.90-99, 2011-08 - Remarks on uniformly minimum variance unbiased estimation (Statistical Information in Inference and Its Related Topics)
Kim Hyo Gyeong; 大谷内 奈穂; 赤平 昌文
数理解析研究所講究録/1758(0)/pp.195-202, 2011-08 - THE VINCZE INEQUALITY FOR THE BAYES RISK
Ohyauchi Nao
Journal of the Japan Statistical Society/34(1)/pp.65-74, 2004-06 - Lower bounds for the Bayes risk of unbiased estimators in non-regular cases (Statistical Inference of Records and Related Statistics)
大谷内 奈穂; 赤平 昌文
RIMS Kokyuroku/1439(0)/pp.247-253, 2005-07 - Amounts of information and inequalities for the Bayes risk(Statistical Conditional Inference and Its Related Topics)
大谷内 奈穂
RIMS Kokyuroku/1506(0)/pp.38-45, 2006-07 - On the Kiefer type information inequality applicable to a family of truncated distributions(Statistical Conditional Inference and Its Related Topics)
赤平 昌文; 大谷内 奈穂
RIMS Kokyuroku/1506(0)/pp.202-210, 2006-07 - Maximal orders of convergence of consistency in terms of measures of diversity(Statistical Decision for Multiple Comparison and Its Related Topics)
大谷内 奈穂; 赤平 昌文
RIMS Kokyuroku/1560(0)/pp.38-46, 2007-06 - Bayes estimation under the LINEX loss (Statistical Analysis of Various Models)
大谷内 奈穂
RIMS Kokyuroku/1603(0)/pp.25-37, 2008-06 - more...
- Second-order asymptotic loss of the MLE of a truncation parameter for a truncated exponential family of distributions
- Conference, etc.
- Asymptotic comparison of location equivariant estimators for a family of truncated distributions
大谷内 奈穂; 赤平 昌文
2014年度統計関連学会連合大会/2014-9-15 - Asymptotic loss of the MLE of a truncation parameter for a two-sided truncated exponential family of distributions
大谷内 奈穂; 赤平 昌文
2015年日本数学会年会/2015-3-23 - Asymptotic loss of the MLE of a truncation parameter for a one-sided truncated exponential family of distributions
赤平 昌文; 大谷内 奈穂
2015年日本数学会年会/2015-3-23 - Asymptotic concentration probabilities of the Pitman estimator and weighted estimators in the non-regular case
Ohyauchi Nao
59th ISI World Statistics Congress/2013-08-29 - Asymptotic comparison of the MLE and MCLE up to the second order for a two-sided truncated exponential family
大谷内 奈穂
日本数学会年会/2014-03-17 - The asymptotic expansion of the maximum likelihood estimator for a truncated exponential family of distributions
赤平昌文; 大谷内奈穂
__1804__188-192/2012-8 - The amount of partial information and sufficiency
大谷内奈穂; 赤平昌文
__1101__110-113/1999 - On lower bounds for the Bayes risk of estimators in the uniform and truncated normal cases
Ohyauchi; N.; Akahira; M.; +大谷内 奈穂
__1224__11-35/2001 - Asymptotics on the maximum probability estimators in statistical experiments
大谷内奈穂; 赤平昌文
__1273__16-28/2002 - Asymptotic efficiencies of estimators in a one-parameter family of truncated distributions
大谷内奈穂; 赤平昌文
__1334__24-36/2003 - An information inequality for the Bayes risk applicable to non-regular cases
Akahira; M.; Ohyauchi; N.; +大谷内 奈穂
__1334__183-191/2003 - Lower bounds for the Bayes risk of unbiased estimators in non-regular cases
大谷内奈穂; 赤平昌文
__1439__247-253/2005 - Amounts of information and inequalities for the Bayes risk
大谷内奈穂
__1506__38-45/2006 - On the Kiefer type information inequality applicable to a family of truncated distributions
赤平昌文; 大谷内奈穂
__1506__202-210/2006 - Maximal orders of convergence of consistency in terms of measures of diversity
大谷内奈穂; 赤平昌文
__1560__38-46/2007 - Bayes estimation under the LINEX loss
大谷内奈穂
__1603__25-37/2008 - The non-regular statistical structure from the viewpoint of the loss of information
Kim Hyo Gyeong; 大谷内奈穂; 赤平昌文
__1758__90-99/2011-08 - Remarks on uniformly minimum variance unbiased estimation
Kim Hyo Gyeong; 大谷内奈穂; 赤平昌文
__1758__195-202/2011-08
- Asymptotic comparison of location equivariant estimators for a family of truncated distributions
- Teaching
2024-10 -- 2025-02 Research in Mathematics of Information IIA University of Tsukuba. 2024-10 -- 2025-02 Research in Mathematics of Information IA University of Tsukuba. 2024-04 -- 2024-08 Research in Mathematics of Information IIB University of Tsukuba. 2024-04 -- 2024-08 Research in Mathematics of Information IB University of Tsukuba. 2024-04 -- 2024-08 Research in Mathematics of Information IA University of Tsukuba. 2024-10 -- 2025-02 Research in Mathematics of Information IIB University of Tsukuba. 2024-10 -- 2025-02 Introduction to Mathematics of Information II: An Approach via Mathematical Statistics University of Tsukuba. 2024-04 -- 2024-05 Invitation to Arts and Sciences University of Tsukuba. 2024-10 -- 2025-02 Problems for Students in Elementary Statistics University of Tsukuba. 2024-04 -- 2024-07 First Year Seminar University of Tsukuba. more... - Talks
- Asymptotic comparison of estimators for a family of truncated distributions
大谷内奈穂; 赤平昌文
RIMS 共同研究"Asymptotic Expansions for Various Models and Their Related Topics"/2013-03-05 - Loss of information associated with the statistic in a class of non-regular cases
M. Akahira; H. G. Kim; N. Ohyauchi.
The 2nd Institute of Mathematical Statistics Asia Pacific Rim Meeting/2012-07-03 - A higher order approximation to the distribution of a non-central t-statistic under non-normality
Ohyauchi; N.; Akahira; M.; Kawai; S.; +大谷内 奈穂
The 58th Session of the International Statistical Institute/2011-08-23 - The non-regular statistical structure from the viewpoint of the loss of information
赤平昌文; Kim Hyo Gyeong; 大谷内奈穂
RIMS共同研究"Statistical Information in Inference and Its Related Topics"/2011-03-08 - Loss of information associated with the statistic for a family of non-regular distributions
赤平昌文; Kim Hyo Gyeong; 大谷内奈穂
日本数学会年会/2011-03-22 - To what is the mid-range estimator bearable in the non-regular situation?
大谷内奈穂; 赤平昌文
京都大学数理解析研究所(短期共同)研究会 "Statistical Inference and the Bioequivalence Problem"/2001-03-05 - Maximum probability estimation in statistical experiments
大谷内奈穂; 赤平昌文
京都大学数理解析研究所(短期共同)研究会 "Statistical Experiments and Clinical Trials"/2002-03-11 - Asymptotic comparison of estimators for non-reglar distributions
大谷内 奈穂
科研費シンポジウム"計算機指向の統計手法の理論とその応用"/2002-12-20 - Asymptotic efficiencies of estimators in a one-parameter family of truncated distributions
大谷内奈穂; 赤平昌文
京都大学数理解析研究所(短期共同) 研究会 "Approximations to the Statistical Distributions"/2003-03-03 - Information inequality bounds for the risk
大谷内奈穂; 赤平昌文
科研費シンポジウム"統計数理の基礎理論について"/2005-12-21 - Maximal orders of convergence of consistency in terms of measures of diversity
大谷内奈穂; 赤平昌文
RIMS共同研究"Statistical Decision for Multiple Comparison and Its Related Topics"/2007-03-12 - Bayesian estimation under the LINEX loss
大谷内 奈穂
RIMS共同研究"Statistical Analysis of Various Models"/2008-03-10 - A higher order approximation to the distribution of a non-central t-statistic without the normality assumption
赤平昌文; 大谷内奈穂; 河合伸一
日本数学会年会/2010-03-26 - Comparison of risks of estimators under the LINEX loss in non-regular cases
大谷内 奈穂
日本数学会秋季総合分科会/2008-09-25 - Information inequality bounds in non-regular estimation
大谷内奈穂
日本数学会秋季総合分科会/2007-09-23 - Information inequalities from the viewpoint of inverse problem
Ohyauchi; N.; Akahira; M.; +大谷内 奈穂
The 56th Session of the International Statistical Institute/2007-08-27 - The Kiefer type information inequality for the variance applicable to a family of truncated distributions
大谷内奈穂; 赤平昌文
日本数学会秋季総合分科会/2006-09-22 - Bayes type information inequalities in estimation
大谷内奈穂; 赤平昌文
日本数学会秋季総合分科会/2005-09-22 - An information inequality applicable to non-regular cases
大谷内奈穂; 赤平昌文
日本数学会秋季総合分科会/2003-09-26 - On the Pitman estimator for a family of non-regular distributions
Akahira; M.; Ohyauchi; N.; +大谷内 奈穂
The 54th Session of the International Statistical Institute/2003-08-15 - Information inequalities for the Bayes risk in the non-reglar case
大谷内奈穂; 赤平昌文
日本数学会秋季総合分科会/2002-09-27 - An information inequality for the expected quadratic risk in the uniform case
大谷内奈穂; 赤平昌文
日本数学会秋季総合分科会/2000-09-27
- Asymptotic comparison of estimators for a family of truncated distributions
(Last updated: 2021-08-23)