OHYAUCHI Nao

Affiliation
Institute of Pure and Applied Sciences
Official title
Assistant Professor
Research fields
Foundations of mathematics/Applied mathematics
Research keywords
数理統計学
Research projects
Bayes的アプローチによる統計的非正則推定の新展開2010 -- 2013Japan Society of for the Promotion of Science/若手研究(B)3,250,000Yen
統計的非正則推定論における情報不等式の効用                   2005 -- 2007Japan Society of for the Promotion of Science/若手研究(B)4,040,000Yen
Career history
2004-04 -- 2004-05国立大学法人筑波大学大学院数理物質科学研究科博士特別研究員
2004-06 -- 2005-03国立大学法人筑波大学大学院理工学研究科ベンチャー・ビジネス・ラボラトリー研究員
2005-04 -- 2007-03国立大学法人筑波大学大学院数理物質科学研究科助手
2007-04 -- (current)国立大学法人筑波大学大学院数理物質科学研究科助教
Degree
2004-03Ph.DUniversity of Tsukuba
Licenses and qualifications
1999-03-26高等学校教諭一種免許状数学科
Academic societies
2005 -- (current)日本数学会
2006 -- 2016THE JAPAN STATISTICAL SOCIETY
Articles
  • Second-order asymptotic loss of the MLE of a truncation parameter for a truncated exponential family of distributions
    Akahira M.; Ohyauchi N.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS/46(12)/pp.6085-6097, 2017
  • Second Order Asymptotic Loss of the MLE of a Truncation Parameter for a Two-Sided Truncated Exponential Family of Distributions
    Akahira Masafumi; Ohyauchi Nao
    JOURNAL OF THE JAPAN STATISTICAL SOCIETY/46(1)/pp.27-50, 2016
  • Comparison of risks of estimators under the LINEX loss for a family of truncated distributions
    Ohyauchi Nao
    Statistics/47(3)/pp.590-604, 2013-06
  • Asymptotic comparison of estimators for a family of truncated distributions (Asymptotic Expansions for Various Models and Their Related Topics)
    大谷内 奈穂; 赤平 昌文
    RIMS Kokyuroku/1860/pp.129-139, 2013-11
  • Comparison of the Bayes risks of estimators for a family of truncated normal distributions
    Ohyauchi N.
    Commun. Statist.-Theory and Meth./31(5)/p.699-718, 2002-01
  • Information inequalities for the Bayes risk for a family of non-regular distributions
    Akahira; M.; Ohyauchi; N.; +大谷内 奈穂
    Ann. Inst. Statist. Math./54(4)/p.806-815, 2002-01
  • An information inequality for the Bayes risk for a family of uniform distributions
    Ohyauchi; N.; Akahira; M.; +大谷内 奈穂
    Istatistik/5/p.1-6, 2002-01
  • The Vincze inequality for the Bayes risk
    Ohyauchi N.
    J. Japan Statist. Soc./34(1)/p.65-74, 2004-01
  • On the Pitman estimator for afamily of non-regular distributions
    Akahira; M.; Ohyauchi; N.; Takeuchi; K.; +大谷内 奈穂
    Metron/65(1)/p.113-127, 2007-01
  • The Amount of Partial Information and Sufficiency (Statistical Region Estimation and Its Application)
    大谷内 奈穂; 赤平 昌文
    RIMS Kokyuroku/1101(0)/pp.110-113, 1999-06
  • On lower bounds for the Bayes risk of estimators in the uniform and truncated normal cases (Statistical Inference and the Bioequivalence Problem)
    大谷内 奈穂; 赤平 昌文
    RIMS Kokyuroku/1224(0)/pp.11-35, 2001-07
  • Asymptotics of the Maximum Probability Estimators in Statistical Experiments (Statistical Experiments and Clinical Trials)
    大谷内 奈穂; 赤平 昌文
    RIMS Kokyuroku/1273(0)/pp.16-28, 2002-07
  • Asymptotic efficiencies of estimators in a one-parameter family of truncated distributions (Approximations to the Statistical Distributions)
    大谷内 奈穂; 赤平 昌文
    RIMS Kokyuroku/1334(0)/pp.24-36, 2003-07
  • An information inequality for the Bayes risk applicable to non-regular cases (Approximations to the Statistical Distributions)
    赤平 昌文; 大谷内 奈穂
    RIMS Kokyuroku/1334(0)/pp.183-191, 2003-07
  • The asymptotic expansion of the maximum likelihood estimator for a truncated exponential family of distributions (A New Perspective to Statistical Models and Its Related Topics)
    赤平 昌文; 大谷内 奈穂
    RIMS Kokyuroku/1804(0)/pp.188-192, 2012-08
  • Loss of information of a statistic for a family of non-regular distributions, II: more general case
    Akahira Masafumi; Kim Hyo Gyeong; Ohyauchi Nao
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS/64(6)/pp.1121-1138, 2012-12
  • 統計的非正則推定における Bayes 的アプローチによる情報不等式
    大谷内 奈穂
    數學/62(3)/pp.366-385, 2010-07
  • The non-regular statistical structure from the viewpoint of the loss of information (Statistical Information in Inference and Its Related Topics)
    Kim Hyo Gyeong; 大谷内 奈穂; 赤平 昌文
    数理解析研究所講究録/1758(0)/pp.90-99, 2011-08
  • Remarks on uniformly minimum variance unbiased estimation (Statistical Information in Inference and Its Related Topics)
    Kim Hyo Gyeong; 大谷内 奈穂; 赤平 昌文
    数理解析研究所講究録/1758(0)/pp.195-202, 2011-08
  • THE VINCZE INEQUALITY FOR THE BAYES RISK
    Ohyauchi Nao
    Journal of the Japan Statistical Society/34(1)/pp.65-74, 2004-06
  • Lower bounds for the Bayes risk of unbiased estimators in non-regular cases (Statistical Inference of Records and Related Statistics)
    大谷内 奈穂; 赤平 昌文
    RIMS Kokyuroku/1439(0)/pp.247-253, 2005-07
  • Amounts of information and inequalities for the Bayes risk(Statistical Conditional Inference and Its Related Topics)
    大谷内 奈穂
    RIMS Kokyuroku/1506(0)/pp.38-45, 2006-07
  • On the Kiefer type information inequality applicable to a family of truncated distributions(Statistical Conditional Inference and Its Related Topics)
    赤平 昌文; 大谷内 奈穂
    RIMS Kokyuroku/1506(0)/pp.202-210, 2006-07
  • Maximal orders of convergence of consistency in terms of measures of diversity(Statistical Decision for Multiple Comparison and Its Related Topics)
    大谷内 奈穂; 赤平 昌文
    RIMS Kokyuroku/1560(0)/pp.38-46, 2007-06
  • Bayes estimation under the LINEX loss (Statistical Analysis of Various Models)
    大谷内 奈穂
    RIMS Kokyuroku/1603(0)/pp.25-37, 2008-06
  • more...
Conference, etc.
  • Asymptotic comparison of location equivariant estimators for a family of truncated distributions
    大谷内 奈穂; 赤平 昌文
    2014年度統計関連学会連合大会/2014-9-15
  • Asymptotic loss of the MLE of a truncation parameter for a two-sided truncated exponential family of distributions
    大谷内 奈穂; 赤平 昌文
    2015年日本数学会年会/2015-3-23
  • Asymptotic loss of the MLE of a truncation parameter for a one-sided truncated exponential family of distributions
    赤平 昌文; 大谷内 奈穂
    2015年日本数学会年会/2015-3-23
  • Asymptotic concentration probabilities of the Pitman estimator and weighted estimators in the non-regular case
    Ohyauchi Nao
    59th ISI World Statistics Congress/2013-08-29
  • Asymptotic comparison of the MLE and MCLE up to the second order for a two-sided truncated exponential family
    大谷内 奈穂
    日本数学会年会/2014-03-17
  • The asymptotic expansion of the maximum likelihood estimator for a truncated exponential family of distributions
    赤平昌文; 大谷内奈穂
    __1804__188-192/2012-8
  • The amount of partial information and sufficiency
    大谷内奈穂; 赤平昌文
    __1101__110-113/1999
  • On lower bounds for the Bayes risk of estimators in the uniform and truncated normal cases
    Ohyauchi; N.; Akahira; M.; +大谷内 奈穂
    __1224__11-35/2001
  • Asymptotics on the maximum probability estimators in statistical experiments
    大谷内奈穂; 赤平昌文
    __1273__16-28/2002
  • Asymptotic efficiencies of estimators in a one-parameter family of truncated distributions
    大谷内奈穂; 赤平昌文
    __1334__24-36/2003
  • An information inequality for the Bayes risk applicable to non-regular cases
    Akahira; M.; Ohyauchi; N.; +大谷内 奈穂
    __1334__183-191/2003
  • Lower bounds for the Bayes risk of unbiased estimators in non-regular cases
    大谷内奈穂; 赤平昌文
    __1439__247-253/2005
  • Amounts of information and inequalities for the Bayes risk
    大谷内奈穂
    __1506__38-45/2006
  • On the Kiefer type information inequality applicable to a family of truncated distributions
    赤平昌文; 大谷内奈穂
    __1506__202-210/2006
  • Maximal orders of convergence of consistency in terms of measures of diversity
    大谷内奈穂; 赤平昌文
    __1560__38-46/2007
  • Bayes estimation under the LINEX loss
    大谷内奈穂
    __1603__25-37/2008
  • The non-regular statistical structure from the viewpoint of the loss of information
    Kim Hyo Gyeong; 大谷内奈穂; 赤平昌文
    __1758__90-99/2011-08
  • Remarks on uniformly minimum variance unbiased estimation
    Kim Hyo Gyeong; 大谷内奈穂; 赤平昌文
    __1758__195-202/2011-08
Teaching
2024-10 -- 2025-02Research in Mathematics of Information IIAUniversity of Tsukuba.
2024-10 -- 2025-02Research in Mathematics of Information IAUniversity of Tsukuba.
2024-04 -- 2024-08Research in Mathematics of Information IIBUniversity of Tsukuba.
2024-04 -- 2024-08Research in Mathematics of Information IBUniversity of Tsukuba.
2024-04 -- 2024-08Research in Mathematics of Information IAUniversity of Tsukuba.
2024-10 -- 2025-02Research in Mathematics of Information IIBUniversity of Tsukuba.
2024-10 -- 2025-02Introduction to Mathematics of Information II: An Approach via Mathematical StatisticsUniversity of Tsukuba.
2024-04 -- 2024-05Invitation to Arts and SciencesUniversity of Tsukuba.
2024-10 -- 2025-02Problems for Students in Elementary StatisticsUniversity of Tsukuba.
2024-04 -- 2024-07First Year SeminarUniversity of Tsukuba.
more...
Talks
  • Asymptotic comparison of estimators for a family of truncated distributions
    大谷内奈穂; 赤平昌文
    RIMS 共同研究"Asymptotic Expansions for Various Models and Their Related Topics"/2013-03-05
  • Loss of information associated with the statistic in a class of non-regular cases
    M. Akahira; H. G. Kim; N. Ohyauchi.
    The 2nd Institute of Mathematical Statistics Asia Pacific Rim Meeting/2012-07-03
  • A higher order approximation to the distribution of a non-central t-statistic under non-normality
    Ohyauchi; N.; Akahira; M.; Kawai; S.; +大谷内 奈穂
    The 58th Session of the International Statistical Institute/2011-08-23
  • The non-regular statistical structure from the viewpoint of the loss of information
    赤平昌文; Kim Hyo Gyeong; 大谷内奈穂
    RIMS共同研究"Statistical Information in Inference and Its Related Topics"/2011-03-08
  • Loss of information associated with the statistic for a family of non-regular distributions
    赤平昌文; Kim Hyo Gyeong; 大谷内奈穂
    日本数学会年会/2011-03-22
  • To what is the mid-range estimator bearable in the non-regular situation?
    大谷内奈穂; 赤平昌文
    京都大学数理解析研究所(短期共同)研究会 "Statistical Inference and the Bioequivalence Problem"/2001-03-05
  • Maximum probability estimation in statistical experiments
    大谷内奈穂; 赤平昌文
    京都大学数理解析研究所(短期共同)研究会 "Statistical Experiments and Clinical Trials"/2002-03-11
  • Asymptotic comparison of estimators for non-reglar distributions
    大谷内 奈穂
    科研費シンポジウム"計算機指向の統計手法の理論とその応用"/2002-12-20
  • Asymptotic efficiencies of estimators in a one-parameter family of truncated distributions
    大谷内奈穂; 赤平昌文
    京都大学数理解析研究所(短期共同) 研究会 "Approximations to the Statistical Distributions"/2003-03-03
  • Information inequality bounds for the risk
    大谷内奈穂; 赤平昌文
    科研費シンポジウム"統計数理の基礎理論について"/2005-12-21
  • Maximal orders of convergence of consistency in terms of measures of diversity
    大谷内奈穂; 赤平昌文
    RIMS共同研究"Statistical Decision for Multiple Comparison and Its Related Topics"/2007-03-12
  • Bayesian estimation under the LINEX loss
    大谷内 奈穂
    RIMS共同研究"Statistical Analysis of Various Models"/2008-03-10
  • A higher order approximation to the distribution of a non-central t-statistic without the normality assumption
    赤平昌文; 大谷内奈穂; 河合伸一
    日本数学会年会/2010-03-26
  • Comparison of risks of estimators under the LINEX loss in non-regular cases
    大谷内 奈穂
    日本数学会秋季総合分科会/2008-09-25
  • Information inequality bounds in non-regular estimation
    大谷内奈穂
    日本数学会秋季総合分科会/2007-09-23
  • Information inequalities from the viewpoint of inverse problem
    Ohyauchi; N.; Akahira; M.; +大谷内 奈穂
    The 56th Session of the International Statistical Institute/2007-08-27
  • The Kiefer type information inequality for the variance applicable to a family of truncated distributions
    大谷内奈穂; 赤平昌文
    日本数学会秋季総合分科会/2006-09-22
  • Bayes type information inequalities in estimation
    大谷内奈穂; 赤平昌文
    日本数学会秋季総合分科会/2005-09-22
  • An information inequality applicable to non-regular cases
    大谷内奈穂; 赤平昌文
    日本数学会秋季総合分科会/2003-09-26
  • On the Pitman estimator for a family of non-regular distributions
    Akahira; M.; Ohyauchi; N.; +大谷内 奈穂
    The 54th Session of the International Statistical Institute/2003-08-15
  • Information inequalities for the Bayes risk in the non-reglar case
    大谷内奈穂; 赤平昌文
    日本数学会秋季総合分科会/2002-09-27
  • An information inequality for the expected quadratic risk in the uniform case
    大谷内奈穂; 赤平昌文
    日本数学会秋季総合分科会/2000-09-27

(Last updated: 2021-08-23)