MORITSUGU Shuichi
- Articles
- グレブナー基底による幾何定理の証明について (II) : イデアル成分の分解の利用 (Computer Algebra : Design of Algorithms, Implementations and Applications)
森継 修一; 荒井 千里
RIMS Kokyuroku/1652(0)/pp.173-181, 2009-06 - An application of computer algebra to studies on the history of Japanese mathematics
MORITSUGU Shuichi; ARAI Chisato
Bulletin of the Japan Society for Symboric and Algebraic Computation/15(2)/pp.3-13, 2008-12 - Geometry Theorem Proving by Groebner Bases - Algebraic Factoring Free Approach
Moritsugu Shuichi; Arai Chisato
Proc. of ADG 2008, Shanghai, China, September 22-24, 2008./pp.12-20, 2008-09 - Geometry Theorem Proving by Groebner Bases – Using Ideal Decompositions
Moritsugu S.; Arai C.
ISSAC 2008: Abstracts of Poster Sessions, ACM Communications in Computer Algebra/42(3&4)/p.158-159, 2008-09 - 古今算法記遺題の数値解について (Computer Algebra : Design of Algorithms, Implementations and Applications)
荒井 千里; 森継 修一
RIMS Kokyuroku/1568(0)/pp.87-93, 2007-09 - On the Efficiency of Geometry Theorem Proving by Groebner Bases
Moritsugu S.; Arai C.
Proc. of Calculemus/MKM 2007 Work in Progress, RISC-Linz Report Series No.07-06/p.35-45, 2007-06 - On the Efficiency of Geometry Theorem Proving by Grobner Bases
森継 修一; 荒井 千里
Transactions of the Japan Society for Industrial and Applied Mathematics/17(2)/pp.183-193, 2007-06 - Risa/Asir による Euclid 幾何定理証明プログラムの実装
荒井 千里; 森継 修一
Jouranl of Japan Society for Symboric and Algebraic Computation/13(1)/pp.54-57, 2006-12 - Solving Cubic Equations by ORIGAMI(Computer Algebra : Design of Algorithms, Implementations and Applications)
森継 修一
RIMS Kokyuroku/1514(0)/pp.155-159, 2006-09 - Solving Cubic Equations by ORIGAMI
森継 修一
Transactions of the Japan Society for Industrial and Applied Mathematics/16(1)/pp.79-92, 2006-03 - Solving Cubic Equations by ORIGAMI
Moritsugu S.
ACA 2005: Abstracts of Presentations/pp.31-31, 2005-08 - Computing RUR Solutions to Systems of Algebraic Equations by Matrix Eigenproblems
森継 修一
Transactions of the Japan Society for Industrial and Applied Mathematics/15(2)/pp.73-87, 2005-06 - 折り紙による角の三等分について
森継 修一; 菊池 留珠
Jouranl of Japan Society for Symboric and Algebraic Computation/11(3)/pp.119-123, 2005-03 - Computing RUR Solutions to Polynomial Systems by Matrix Eigenproblems
Moritsugu S.; Arai C.
Proc. of International Conference on Polynomial System Solving 2004/p.16-18, 2004-11 - A Practical Implementation of Modular Algorithms for Frobenius Normal Forms of Rational Matrices(Algorithm Theory)
MORITSUGU SHUICHI
Transactions of Information Processing Society of Japan/45(6)/pp.1630-1641, 2004-06 - 整数行列のFrobenius標準形のモジュラー計算法
森継修一
数式処理/9(4)/pp.52-67, 2003-04 - 整数行列のFrobenius標準形のモジュラー計算法(II) (Computer Algebra : Algorithms, Implementations and Applications)
森継修一; 栗山和子
RIMS Kokyuroku/1295/pp.87-92, 2002-11 - 整数行列のFrobenius標準形のモジュラー計算法
森継修一; 栗山 和子
数式処理/8(4)/pp.31-32, 2002-01 - Symbolic Computation of Eigenvalues, Eigenvectors and Generalized Eigenvectors of Matrices by Computer Algebra
森継修一; 栗山和子
Transactions of the Japan Society for Industrial and Applied Mathematics/11(2)/pp.103-120, 2001-06 - 整数行列のFrobenius標準形のモジュラー計算法
森継修一; 栗山和子
RIMS Kokyuroku/1199/pp.220-227, 2001-04 - A Linear Algebra Method for Solving Systems of Algebraic Equations
Moritsugu S.; Kuriyama K.
Journal of Japan Society for Symbolic and Algebraic Computation/7(4)/p.2-22, 2000-01 - On Multiple Zeros of Systems of Algebraic Equations
Moritsugu S.; Kuriyama K.
Proceedings of International Symposium on Symbolic and Algebraic Computation (July 29-31, 1999, Vancouver, Canada)/p.23-30, 1999-07 - On Multiple Zeros of Systems of Algebraic Equations
Moritsugu S.; Kuriyama K.
Poster Session Abstract: International Symposium on Symbolic and Algebraic Computation (August 13-15, 1998, Rostock, Germany)/p.37-38, 1998-08 - A Linear Algebra Method for Solving Systems of Algebraic Equations
Moritsugu S.; Kuriyama K.
Johannes Kepler University, RISC-Linz Report Series/(97-35)/pp.1-27, 1997-11 - Fraction-free Method for Computing Rational Normal Forms of Polynomial Matrices
Moritsugu S.; Kuriyama K.
Johannes Kepler University, RISC-Linz Report Series/(97-18)/pp.1-12, 1997-06 - more...
- グレブナー基底による幾何定理の証明について (II) : イデアル成分の分解の利用 (Computer Algebra : Design of Algorithms, Implementations and Applications)