AKIMOTO Yohei

Researcher's full information

Conference, etc.
  • Benchmarking the Novel CMA-ES Restart Strategy Using the Search History on the BBOB Noiseless Testbed
    Yamaguchi Takahiro; Akimoto Yohei
    GECCO 2017 Workshop on Real-Parameter Black-Box Optimization Benchmarking (BBOB 2017)/2017-07-15--2017-07-19
  • Introducing the Cumulation to the Population Based Incremental Learning and the Compact GA to Relax Genetic Drift
    Tanaka Keigo; Akimoto Yohei
    Genetic and Evolutionary Computation Conference (GECCO 2017)/2017-07-15--2017-07-19
  • Modified Box Constraint Handling for the Covariance Matrix Adaptation Evolution Strategy
    Hidekazu Miyazawa; Akimoto Yohei
    Genetic and Evolutionary Computation Conference (GECCO 2017)/2017-07-15--2017-07-19
  • Effect of the Mean Vector Learning Rate in CMA-ES
    Hidekazu Miyazawa; Akimoto Yohei
    Genetic and Evolutionary Computation Conference (GECCO 2017)/2017-07-15--2017-07-19
  • Optimal Step-Size for the Weighted Recombination Evolution Strategy
    Akimoto Yohei; Anne Auger; Nikolaus Hansen
    Theory of Randomized Optimization Heuristics (Dagstuhl Seminar 17191)/2017-05-07--2017-05-12
  • Population Size Adaptation for the CMA-ES Based on the Accuracy of the Parameter Update
    Nishida Kouhei; Akimoto Yohei
    APSCIT 2017 Annual Meeting/2017-07-27--2017-07-30
  • Improvement to the Box Constraint Handling Method for the CMA-ES and its Generalization to Linear Constraints
    Sakamoto Naoki; Akimoto Yohei
    APSCIT 2017 Annual Meeting/2017-07-27--2017-07-30
  • Covariance Matrix Adaptation Evolution Strategy for High Dimensional Search Space
    Akimoto Yohei
    APSCIT 2017 Annual Meeting/2017-07-27--2017-07-30
  • Dynamic Optimization of Neural Network Structures Using Probabilistic Modeling
    Shirakawa Shinichi; Iwata Yasushi; Akimoto Yohei
    AAAI Conference on Artificial Intelligence/2018-02-02--2018-02-07