木下 保(キノシタ タモツ)
- 所属
- 数理物質系
- 職名
- 准教授
- 生年月
- 1968-05
- eメール
- 5649:>4?,N]Y8,?3W?>@6@-,W,.W5;d
- 研究キーワード
関数解析 フーリエ解析 ウェーブレット解析 関数方程式 偏微分方程式 双曲型方程式 波動方程式 - 研究課題
多次元のウェーブレットによる多重方向解析と、多次元の波動方程式への応用 2020 -- 2024 木下 保 日本学術振興会/基盤研究(C) 4,290,000円 ウェーブレット解析による変数係数を持つ波動方程式への超局所解析的応用 2016 -- 2019 木下 保 日本学術振興会/基盤研究(C) 4,680,000円 ウェーブレットの偏微分方程式への応用 -- (現在) /(選択しない) 偏微分方程式に対するウェーブレット理論の発展とその数値解析的応用 2012 -- 2015 日本学術振興会/基盤研究(C) 1,430,000円 非線形双曲型システムのライフスパンの解析 2008 -- 2011 日本学術振興会/基盤研究(C) 4,420,000円 非線形弱双曲型システムの解のライフスパンに関する研究 2005 -- 2007 日本学術振興会/若手研究(B) 3,780,000円 高階の非線形双曲型方程式の解のライフスパンに関する研究 2002 -- (現在) 日本学術振興会/若手研究(B) 2,100,000円 - 学歴
-- 1992 早稲田大学 教育学部 理学科・数学専修 -- 1995 筑波大学 理工学研究科 数学 -- 1997 筑波大学 数学研究科 - 取得学位
博士(理学) - 所属学協会
2010 -- (現在) 日本応用数理学会 -- (現在) 日本数学会 - 論文
- On the Construction of the Orthonormal Wavelet in the Hardy Space H^2(R)
Kinoshita Tamotu; Hashimoto Hirofumi
International Journal of Wavelets, Multiresolution and Information Processing/20(01), 2022 - On Directional Frames Having Lipschitz Continuous Fourier Transforms
Kinoshita Tamotu; Fujinoki Kensuke; Hashimoto Hirofumi
International Journal of Applied and Computational Mathematics/7(6), 2021 - Haar and Shannon wavelet expansions with explicit coefficients of the Takagi function
Fukuda Naohiro; Kinoshita Tamotu; Suzuki Toshio
Indian Journal of Mathematics/62(1)/pp.21-41, 2020-04 - On the Double Windowed Ridgelet Transform and its Inverse
Fujii Katsuya; Kinoshita Tamotu
Integral Transforms And Special Functions/31(2)/pp.118-132, 2020 - Approximation of Distortion Sound via Fourier and Wavelet Transform
Suzuki Toshio; Zempo Keiichi; Kinoshita
Proceedings of the 25th International Congress on Sound and Vibration, 2018-07 - クリッピング量におけるディストーションサウンドの特徴量抽出
鈴木 俊夫; 善甫 啓一; 木下 保
日本音響学会音楽音響研究会資料/pp.17-20, 2017-09 - A Feature Extraction of Distortion Sounds and its Correlation to Human Perception
Suzuki Toshio; Zempo Keiichi; Kinoshita Tamotu
Proceeding of the 6th Conference of the Asia-Pacific Society for the Cognitive Sciences of Music (APSCOM2017), , 2017-08 - 4次のStrombergウェーブレット
福田 尚広; 木下 保
日本応用数理学会論文誌/27(2)/pp.162-185, 2017-06 - On an th-order fractional Radon transform and a wave type of equation
Fujii Katsuya; Kinoshita Tamotu; Suzuki Toshio
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS/29(5)/pp.335-351, 2018 - Wavelet transforms on Gelfand-Shilov spaces and concrete examples
Fukuda Naohiro; Kinoshita Tamotu; Yoshino Kazuhisa
Journal of Inequalities and Applications/2017(1)/p.119, 2017-05 - Representation of solutions of second order one-dimensional model hyperbolic equations
Galstian Anahit; Kinoshita Tamotu
JOURNAL D ANALYSE MATHEMATIQUE/130/pp.355-374, 2016-11 - On second order hyperbolic equations with coefficients degenerating at infinity and the loss of derivatives and decays
Kinoshita Tamotu
JOURNAL OF DIFFERENTIAL EQUATIONS/261(10)/pp.5411-5423, 2016-11 - 一般化された高木関数とそのウェーブレット展開について (ウェーブレット解析と信号処理)
福田 尚広; 木下 保; 鈴木 俊夫
数理解析研究所講究録/2001/pp.74-82, 2016-07 - On the unconditional convergence of wavelet expansions for continuous functions
Fukuda Naohiro; Kinoshita Tamotu; Suzuki Toshio
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING/14(1), 2016-01 - 無条件収束しないウェーブレット展開の例について (ウェーブレット解析とサンプリング理論)
福田 尚広; 木下 保; 鈴木 俊夫
数理解析研究所講究録/1972/pp.57-66, 2015-11 - ON SECOND ORDER WEAKLY HYPERBOLIC EQUATIONS WITH OSCILLATING COEFFICIENTS
Kinoshita Tamotu
Differential and Integral Equations/28(5-6)/pp.581-600, 2015-05 - On the construction of band-limited wavelets with the Prouhet-Thue-Morse sequence
Fukuda Naohiro; Kinoshita Tamotu; Uehara Ion
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS/38(3)/pp.385-398, 2015-05 - On a coefficient concerning an ill-posed Cauchy problem and the singularity detection with the wavelet transform
Kinoshita Tamotu; Fukuda Naohiro
Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 2014 - On the wavelets having Gevrey regularities and subexponential decays
Fukuda Naohiro; Kinoshita Tamotu; Uehara Ion
Mathematische Nachrichten/287(5-6)/pp.546-560, 2014-04 - On the Galerkin-wavelet method for higher order differential equations
Fukuda Naohiro; Kinoshita Tamotu; Kubo Takayuki
Bulletin of the Korean Mathematical Society/50(3)/pp.963-982, 2013-5 - On non-symmetric orthogonal spline wavelets
木下 保; 福田尚広
Southeast Asian Bulletin of Mathematics/36(3)/pp.319-342, 2012-06 - On the construction of new families of wavelets
Fukuda Naohiro; Kinoshita Tamotu
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS/29(1)/pp.63-82, 2012-01 - On the new family of wavelet interpolating to the Shannon wavelet (Recent development and scientific applications in wavelet analysis)
福田 尚広; 木下 保
数理解析研究所講究録/1743(0)/pp.55-64, 2011-05 - Time regularity of the solutions to second order hyperbolic equations
Kinoshita Tamotu; Taglialatela Giovanni
ARKIV FOR MATEMATIK/49(1)/pp.109-127, 2011-04 - On the new family of wavelets interpolating to the Shannon wavelet
Fukuda Naohiro; Kinoshita Tamotu
JSIAM Letters/3(0)/pp.33-36, 2011-01 - さらに表示...
- On the Construction of the Orthonormal Wavelet in the Hardy Space H^2(R)
- 著書
- On the Finite Element Method with Riesz Bases and its Applications to Some Partial Differential Equations
Fukuda Naohiro; Kinoshita Tamotu; Kubo Takayuki
PROCEEDINGS OF THE 2013 10TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS/IEEE COMPUTER SOC/pp.761-766, 2013 - 微積分学入門―例題を通して学ぶ解析学
磯崎 洋; 筧 知之; 籠屋 恵嗣; 砂川 秀明; 竹山美宏; +木下 保
培風館, 2008-01
- On the Finite Element Method with Riesz Bases and its Applications to Some Partial Differential Equations
- 会議発表等
- 振動現象を表す微分方程式
木下 保
第13回筑波大学RCMSサロン「波・振動現象の数理」/2024-07-11--2024-07-11 - On an orthonormal basis for L2(R) with derivatives of the normalized sinc function
木下 保
筑波ウェーブレット研究集会/2023-10-11--2023-10-12 - On an orthonormal basis for L2(R) with derivatives of the normalized sinc function
木下 保
偏微分方程式研究集会/2023-10-07--2023-10-09 - ウェーブレットフレーム
木下 保
第8回筑波大学RCMSサロン「ウェーブレットフレームとその応用」/2021-12-2--2021-12-2 - Hardy 空間上のウェーブレットについて
木下 保
時間周波数フレームと画像処理への応用/2020-10-19--2020-10-19 - On Directional Frames Having Lipschitz Continuous Fourier Transforms
木下 保
つくば偏微分方程式研究集会/2019-10-13--2019-10-14 - On Directional Frames Having Lipschitz Continuous Fourier Transforms
木下 保
多次元Stockwell変換と時間周波数解析/2019-11-06--2019-11-07 - Approximation of Distortion Sound via Fourier and Wavelet Transform
Suzuki Toshio; Zempo Keiichi; Kinoshita Tamotu
25th International Congress on Sound and Vibration (ICSV25)/2018-07-08--2018-07-12 - On an αth Order Fractional Radon Transform and a Wave Type of Equation
木下 保
調和解析セミナー/2018-09-14--2018-09-14 - On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform
木下 保
名古屋偏微分方程式研究集会/2018-10-06--2018-10-08 - On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform
木下 保
日本応用数理学会年会/2019-03-05--2019-03-05 - On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform
木下 保
トモグラフィーと逆問題/2019-03-26--2019-03-28 - クリッピング量におけるディストーションサウンドの特徴量抽出
鈴木 俊夫; 善甫 啓一; 木下 保
日本音響学会音楽音響研究会/2017-09-02--2017-09-02 - A Feature Extraction of Distortion Sounds and its Correlation to Human Perception
Suzuki Toshio; Zempo Keiichi; Kinoshita Tamotu
6th Conference of the Asia-Pacific Society for the Cognitive Sciences of Music (APSCOM2017)/2017-08-25--2017-08-27
- 振動現象を表す微分方程式
- 担当授業科目
2024-04 -- 2024-08 解析学特別研究IIB 筑波大学 2024-04 -- 2024-08 解析学特別研究IB 筑波大学 2024-04 -- 2024-08 解析学特別研究IVB 筑波大学 2024-04 -- 2024-08 解析学特別研究IVA 筑波大学 2024-10 -- 2025-02 解析学特別研究VB 筑波大学 2024-10 -- 2025-02 解析学特別研究IA 筑波大学 2024-04 -- 2024-08 解析学特別研究VA 筑波大学 2024-10 -- 2025-02 解析学特別研究VA 筑波大学 2024-10 -- 2025-02 解析学特別研究IIA 筑波大学 2024-04 -- 2024-08 数学セミナー 筑波大学 さらに表示... - 授業以外の教育活動
2019-08 -- 2019-08 大学説明会(模擬授業の講師) 筑波大学 2017-05 -- 2017-05 筑波大附属高等学校の研究室訪問 筑波大附属高等学校 2013-08 -- 2013-08 茨城県立下館第一高等学校の出前講義 茨城県立下館第一高等学校 2012-06 -- 2012-06 教員プレゼンバトル 筑波大学 2012-05 -- 2012-05 筑波大学附属高等学校の大学見学 学外 2011-08 -- 2011-08 茨城県立下館第一高等学校の出前講義 学外 2010-08 -- 2010-08 筑波大学体験学習(世話人) 筑波大学 2010-05 -- 2010-05 筑波大学附属高等学校の大学見学 学外 2009-08 -- 2009-08 筑波大学体験学習(講師) 筑波大学 2007 -- 2007 スーパーサイエンスハイスクール(研究室体験研修) 学外 さらに表示... - 一般講演
- ウェーブレットフレーム
木下 保
第8回筑波大学RCMSサロン「ウェーブレットフレームとその応用」/2021-12-2--2021-12-2 - Hardy 空間上のウェーブレットについて
木下 保
時間周波数フレームと画像処理への応用/2020-10-19--2020-10-19 - On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform
木下 保
トモグラフィーと逆問題/2019-03-26--2019-03-28 - On Directional Frames Having Lipschitz Continuous Fourier Transforms
木下 保
つくば偏微分方程式研究集会/2019-10-13--2019-10-14 - On an αth Order Fractional Radon Transform and a Wave Type of Equation
木下 保
調和解析セミナー/2018-09-14--2018-09-14 - On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform
木下 保
日本応用数理学会年会/2019-03-05--2019-03-05 - On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform
木下 保
名古屋偏微分方程式研究集会/2018-10-06--2018-10-08 - On an αth Order Fractional Radon Transform and a Wave Type of Equation
木下 保
函館偏微分方程式研究集会/2017-10-07--2017-10-09 - Curvelets and Parseval frames for multidirectional expansions
木下 保
日本応用数理学会年会/2017-9-7--2017-9-7 - Wavelet transforms on Gelfand-Shilov spaces
Kinoshita Tamotu
信号解析と時間周波数解析/2016-10-24--2016-10-25 - GelFand-Shilov空間におけるウェーブレット変換について
Kinoshita Tamotu
彦根偏微分方程式研究集会/2016-10-08--2016-10-10 - Wave equation in Einstein and de Sitter space-time
Kinoshita Tamotu
数理連携サロン/2016-6-16--2016-6-16 - Some applications of wavelet analysis for hyperbolic equations
Kinoshita Tamotu
偏微分方程式の国際研究集会/2013-11-22 - On the wavelet-Galerkin method with the symplectic structure for Hamiltonian systems
木下 保
偏微分方程式の研究集会/2013-10-12 - On the wavelets having Gevrey regularities and subexponential decays
木下 保
調和解析の国際研究集会/2012-11-18 - 無限回微分可能で指数的な減少度をもたないウェーブレットの限界について
木下 保
ウェーブレット研究部会セミナー/2012-11-9
- ウェーブレットフレーム
- 学協会等委員
2016-03 -- 2016-03 数学教育学会 顧問 2011-04 -- (現在) 日本応用数理学会 JSIAM Letters編集委員会委員
(最終更新日: 2024-09-18)